OPUSFSCTQ

Opus Software Limited

FSC Motorised TQ Driver for the Prepar3D Version 4.5 and Version 5 Simulators

User Guide

September 4, 2024

Contents

ntroduction	2
Software Installation	2
Create a Shortcut	2
General Operation	3
First Time Using the Driver	3
Fest TQ Digital I/O	5
Fest TQ Analog I/O	6
Calibrating Your Motorised TQ	6

Introduction

The **OPUSFSCTQ.EXE** program is supplied free of charge as part of the OpusFSI v6 software installation. The latest release version for OpusFSI v6 can be downloaded from the following link,

http://www.opussoftware.co.uk/opusfsi/OpusFSI v6.msi

Beta versions of OpusMSFS are often posted and these may include upgrades to the TQ driver software. Details are usually posted in the **Announcements** topic of our **SimForums**.

https://www.simforums.com/FORUMS/opus-software_forum49.html

All software can be downloaded from our Downloads web page,

http://www.opussoftware.co.uk/opusfsi/downloads.htm

Software Installation

Simply install the downloaded OpusFSI_v6.msi Microsoft Installation File into its default C:\OpusFSI_v6 folder. Other install drives may be specified but always install OpusFSI into a 'root' folder, that is, do not install OpusFSI into any sub-folder.

Create a Shortcut

After installing the OpusFSI software we recommend you create a shortcut on your desktop for the OPUSFSCTQ driver program. This shortcut will allow you to manually start your driver without too much fuss.

1. In Windows Explorer, navigate to your installation folder (OpusFSI_v6) and right-click on the OPUSFSCTQ.EXE program.

2. Select the **Show more options - Send to - Desktop (create shortcut)** option. Rename the shortcut to 'OpusFSI v6 FSCTQ'.

3. Right-click on the new desktop icon, select **Properties**, in the Shortcut tab check the program is configured to **Start In:** your installation folder (c:\OpusFSI_v6). Select the **Shortcut** tab, click on **Advanced** and tick the checkbox to **Run as Administrator**.

The OPUSFSCTQ driver program accepts the following optional program arguments,

- TEST Operates in test mode
- MOTORISED Selects the Motorised operation (default)
- NONMOTORISED Selects the Non-Motorised operation

By default the driver program powers up in the MOTORISED state.

General Operation

The OPUSFSCTQ driver uses the SimConnect interface to the Prepar3D simulator. At present the OPUSFSCTQ driver uses an assigned serial COM port to communicate with the Motorised TQ.

Prior to using the driver you must ensure the **PMDG SDK** will communicate its data via SimConnect. To do this first browse to your Prepar3D installation folder then navigate to the PMDG\PMDG 737 NGXu sub folder.

Finally use Notepad to edit the **737NGXu_Options.ini** file and make sure the following two lines are included,

[SDK] EnableDataBroadcast=1

Now you are ready to run OpusFSI and then run the OPUSFSCTQ driver. You will be presented with the following form (you may need to minimise or window the simulator's display).

Opus MSFS - FSC	TQ Driver, Versio	n 1.15.5 Beta	(Motorised)	- 🗆 X
	FSC TQ Device	COM 3 🗸	Connect	Disconnected
UPUS	Controller	~	Connect	Disconnected
software		🗌 Relay all Cor	nms between the Cor	troller and TQ Device ports
Test TQ Digital	1/0	Test TQ A	nalog I/O	Spy

Figure 1 - FSC Motorised TQ Driver Main Form

First Time Using the Driver

The first time you use the driver simply select the TQ's assigned serial COM port and click on the **Connect** button. If a good connection is made then the button's legend will change to **Disconnect** and the status box will turn green and display the **Connected** message.

Opus MSFS - FSC	TQ Driver, Versio	n 1.15.5 Beta	(Motorised)	-	-0	×
	FSC TQ Device	COM 3 🗸	Disconnect	Conne	ected	
UFUS	Controller	~	Connect	Discon	nected	
software		🗌 Relay all Co	mms between the Con	troller and TQ (Device p	orts
Test TQ Digital	1/0	Test TQ A	nalog I/O	Sp	y	

After connecting you should use the Test... dialogs to check and calibrate the interface with the Motorised TQ.

N.B.

The driver software will remember your configured options and all positions of displayed dialogs along with the driver's main form.

All the greyed out items are options used in 'in house' for testing and diagnostics.

The driver will not establish its connection with the simulator if the simulator is Paused.

After you have completed the above connection. Open, position, and size the driver's **Spy** window, then leaving the Spy window open, shutdown and re-start the OPUSFSCTQ driver. You should see something like the following messages within the displayed Spy window (see figure below).

Monit	toring Opus MSFS - FSC TQ Driver	×
GEN	General process monitoring has been enabled	0
TST	Warning - The Spy window will slow down the driver	
APP	COM FORT 3 : OPEN	
APP	TX : DATA REQUEST	
CTR	TX : 93 00 50	
DEV	RX : 91 68 93 7C	
DEV	RX : CUTOFF 1 CUTOFF 2	
DEV	RX : 95 7F 97 7F A4 2F A6 31 A0 00 A2 00 AC 11 E1 52	
DEV	RX : E3 55 E5 6C E7 3A E8 00 EA 00 EC 7F F0 32 F2 34	
DEV	RX : F4 OE F6 2F F8 00 FA 00 FC 7F EE 29	
DEV	RX : Flaps 0	
DEV	RX : STAB TRIM - Main Elect NORMAL , Auto Pilot NORMAL	
DEV	RX : TQ 1 Pos 47 (1 %) , Min = 46 , Max = 218	
DEV	RX : TQ 2 Pos 49 (1 %) , Min = 48 , Max = 219	
DEV	RX : REV 1 Pos 0 (0 %) , Min = 0 , Max = 110	
DEV	RX : REV 2 Pos 0 (0 %) , Min = 0 , Max = 113	
DEV	RX : SPLR Pos 17 (2.1 %) , Min = 12 , Max = 252 , State 0	
APP	TX : Trim STOP BLight OFF Park RELEASED	
APP	TX : TQ 1 Ctrl 0	
APP	TX : TQ 2 Ctrl 0	
APP	TX : TRIM Ctrl 127	
APP	TX : TQ1 TQ2 MOTORS ON	
CTR	TX : 93 00 4B	
CTR	TX : SB 00 00 8B 10 00 8B 30 7F	
APP	INITIALISING TO DEVICE	
CIR	TX : 87 10 08	
CIR	TX : 93 00 4B	
CTR	TX : SB 00 00 8B 10 00 6B 30 7F	
APP	TX : ALL MOTORS OFF	
APP	TQ DEVICE INITIALISED	
CTR	TX : 93 00 40	
DEV	RX : 98 01	
SIM	Link established with Simulator	
SIM	Please check simulator not paused	
SIM	Event: Air Folder = PMDG 737-700NGXu SSW	
SIM	Event: Sim Active	
		2.44
		· ·
Que	nend Clear Display Ontions Show Datal Show	Data
508	perio operio on the begins of the betall of the	Lara

Figure 2 – The Spy Window

Note also that using the Spy window will have an impact on the speed of the driver. Hence the warning, so the Spy window should not be left open in normal operations.

In the Spy window all messages marked as **TX** are actual transmissions to the TQ and all messages marked **RX** are the actual received data from the TQ.

Test TQ Digital I/O

The **Test TQ Digital I/O** dialog allows you to test all digital inputs from and control outputs to the FSC Motorised TQ. The digital inputs are all self explanatory, simply operate the input or switch on the TQ and the signal should register in the dialog, highlighted in a green colour.

The **Trim Up** and **Trim Down** digital outputs operate the TQ's trim wheel, moving the wheel in a clockwise and anti-clockwise direction respectively (the Stab Trim indication will not change as this is a separate analogue control).

The FSC Trim Wheel **Speed** can be set from 2 (slow) to 12 (fast), the default is 7.

To check the **Park Brake Release** you must first set the parking brake; the control will then release the brake lever.

To check the **SPLR UP Release** first move the Speed Brake lever to the **ARM** position, then tick the SPLR UP Release option (you should hear the SPLR motor lock release). You will now be able to move the Speed Brake lever all the way to the **UP** position. Move the lever back to **ARM**, turn off the SPLR UP Release option (you should hear another click) now the Speed Brake lever will only move to the **FLIGHT DETENT** position. This check can only be performed when the spoilers are enabled (**Disable Spoilers** checkbox not ticked) within the Test TQ Analog I/O dialog.

N.B. separate **ENABLED** and **ARMED** Speed Brake calibrated positions allow the Speed Brake lever on the TQ to be raised out of the gate on take off without registering in the ARMED position. This enables the speed brake motor to be controlled during RTO operations in the 737 without generating a 737 Config warning (due to the Speed Brakes being ARMED) during the take off roll.

igital IN		Digital OUT				
Raps	0	C Trim Up				
Cutoff 1	Cutoff	Trim Down				
Cutoff 2	Cutoff	Reverse Direction				
TOGA	Off	7 Speed (Def 7)				
A/T	Off	Rng 2 (Slow) - 12 (Fast)				
Park Brake	Off	Backlight				
Hom Cutout	Off	Reverse Backlight				
Stab T	rim Switches	Park Brake Light				
Main Bect	Normal	Park Brake Release				
Auto Pilot	Normal	SPLR UP Release				

Figure 3 - Test TQ Digital I/O Dialog

Test TQ Analog I/O

The **Test TQ Analog I/O** dialog allows you to test all analogue inputs from and set-point (analogue control) outputs to the FSC Motorised TQ. This dialog is also used to set the required calibration data for your Motorised TQ. Note, the calibrated min and max values will also be updated 'on the fly' so to speak. For example, if the driver detects a larger maximum throttle position then the calibrated Max value will be amended.

Analogue IN						Analogue OU	r			
		Min	Маж	Min	Max	TQ 1	TQ 2	SPLR	TRIM	
Throttle 1	46	46	218	Set	Set	46	47	17	95	
Throttle 2	47	47	219	Set	Set				:10	STAB TRIM
Reverse 1	0	0	110	Set	Set					0 50
Reverse 2	0	0	113	Set	Set					Goto
Speed Brake	17	12	253	Set	Set		2 2	1.1		Goto
0	Disable Sp	poilers	Invert	Spoilers Inp	sut				-	10 135
Speed Brake (SPLR	Motor			TQ Motors	,					_ Goto
MOTOR OUTPUT	Inve	at 🗍	Down	т	Q 1 TQ 2		1000		-	15 175
ENABLED	36	0	Goto	100%	0 0			1.00		Goto
ARMED	54	0	Goto	75%		🗆 On	On On	On On	🗆 On	
	192	- 0.	Gata	50%		🕑 Move	e Both TQs	Together		
FLIGHT DETENT			0010	25%				-		

Figure 4 - Test TQ Analog I/O Dialog

The Analogue OUT motor controls should be used with caution. The individual motors can be enabled using the tick boxes below the relevant track bar. When the motors are enabled the position of the control can be adjusted using the sliders (min and max calibrated values are not used to limit the control values) or by typing a value into the control text boxes above the track bars.

Do not enable or move the SPLR position when the Speed Brake lever is locked in the DOWN position. The Speed Brake lever cannot be moved when it is locked down.

Calibrating Your Motorised TQ

First open and position both the **Test TQ Digital I/O** and **Test TQ Analog I/O** dialogs. All calibrations are done using the Test Analog dialog but the **SPLR UP Release** digital control will be needed to calibrate the Speed Brake lever.

Setting the Minimums

This is a simple process. Simply move all levers to their off position so the Speed Brakes will be DOWN, both throttles levers will be fully back, and both reverser levers will be fully down. Now press the **Set** buttons under the **Min** label to assign the minimum input values.

Setting the Maximums

Exercise and move both throttles to the fully forward position. Then ARM the Speed Brake and click on the SPLR UP Release control in the Test Digital dialog. Now move the Speed Brake Lever fully back beyond the UP position. Now press the **Set** buttons under the **Max** label to assign the maximum input values.

For the reverser levers, move both throttle levers fully back. Now raise both reverser levers fully up and down. Press the **Set** buttons under the **Min** and **Max** labels to assign the reverser minimum and maximum input values.

Finally stow the reversers moving both levers fully down.

You have now completed the Max Calibration step.

Checking the Speed Brake Lever

This check can only be performed when the spoilers are enabled, that is when the **Disable Spoilers** checkbox is not ticked.

First move the **Speed Brake** lever to the **ARM** position. Make sure you have released the spoilers by ticking the **SPLR UP Release** option in the Test Digital I/O dialog. The SPLR UP Release control allows full movement of the Speed Brake lever, without it the lever will not move beyond the **FLIGHT DETENT** position.

Starting with the Speed Brake lever in the ARM position and the SPLR UP Release control on;

Click on the **FLIGHT DETENT, UP,** and **ARM Goto** tick boxes to move the Speed Brake lever to each position. The default control values (analogue set-points) of 48, 184, and 224 can be modified to position your Speed Brake lever over the marked positions on the TQ.

When done simply close the Test dialogs.

All calibration data will be saved when you shutdown the OPUSFSCTQ driver program. If needed shutdown and restart the driver program to save all your calibrated data and preferred dialog positions.

Checking the Throttle Synchronisation

First ensure the **Move Both TQs Together** check box is ticked. Now use the **TQ Motors** TQ1 or TQ2 position 'Goto' boxes to command the throttles to various positions. If there is a slight mismatch

of the throttle positions then adjust the value in the **TQ2 Offset** and repeat the 'Goto' tests until both throttle positions are aligned. The **TQ Offset** may range from -20 to 20.

Calibrating the Stab Trim Indicator

At present the Stab Trim Indicator calibration values are fixed within the driver as,

Stab Trim Position 0 = 50Stab Trim Position 5 = 95Stab Trim Position 10 = 135Stab Trim Position 15 = 175

Calibration of these values will be included within a future version of the driver.

Standard Motor Settings

At present the OpusMSFS driver sets the following motor speed and timing settings,

```
Trim Wheel Speed=7Range 2 to 12, slow to fastThrottle Servo Motor Max Speed =10Range 80 to 5, slow to fastThrottle Servo Motor Min Speed =70Range 80 to 5, slow to fastThrottle Servo Motor Spin Time =50ms
```